Dette er tredje og siste innlegg i en miniserie om betinget sannsynlighet og Bayes teorem. Det første innlegget, Betinget sannsynlighet – Bayes teorem, går lett gjennom matematikken. Det andre innlegget, Tolke medisinske tester, bruker Bayes teorem for å tolke medisinske tester statistisk. De to innleggene bruker bayesiansk tankegang.
Tidligere innlegg, dvs. før de to nettopp nevnte, handler mye om statistisk behandling og tolkning av målinger i klimasammenheng. Det er gjort bl.a. i en serie på fem innlegg om Linear regression analysis og i en serie på seks innlegg om Statistical analysis of data with outliers. Disse to seriene, og innlegg som anvender statistikken som de beskriver, bruker en såkalt frekventistisk tankegang.
Bayesiansk og frekventistisk tankegang er på mange måter forskjellige. Statistikere har tildels delt seg i to leirer, slik Ivar Heuch beskriver i artikkelen Striden mellom bayesianere og frekventister om idégrunnlaget for statistiske slutninger. Artikkelen er fra 2008, og i avslutningen skriver Heuch at han tror at det i fremtiden vil etableres en bedre balanse mellom bayesianske og frekventistiske angrepsmåter, og at begge retningene vil finne sin plass i idégrunnlaget for statistikkfaget.
Jeg synes at forskjellen mellom bayesiansk og frekventistisk tankegang formuleres fint i en forelesning fra UIO, Bayesian modelling of time series. Utgangspunktet er en hypotese og en måleserie. Med frekventistisk tankegang spør vi Hva er sannsynligheten for å få en slik måleserie gitt at hypotesen er riktig ? Med bayesiansk tankegang spør vi Hva er sannsynligheten for at hypotesen er riktig gitt måleserien ? I resten av innlegget vil jeg konkretisere denne forskjellen med et eksempel der måleserien er global temperatur gjennom ti år og hypotesen er at global gjennomsnittstemperatur stiger.